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 10 
Though many recent deep learning methods have achieved good performance in point cloud analysis, most of them are 11 
built upon the heavy cost of manual labeling. Unsupervised representation learning methods have attracted increasing 12 
attention due to their high label efficiency. How to learn more useful representations from unlabeled 3D point clouds is 13 
still a challenging problem. Addressing this problem, we propose a novel unsupervised learning approach for point cloud 14 
analysis, named as ULD-Net, consisting of an Equivariant-Crop (Equiv-Crop) module to achieve dense similarity learning. 15 
We propose dense similarity learning that maximizes consistency across two randomly transformed global-local views at 16 
both the instance level and point level. To build feature correspondence between global and local views, an Equiv-Crop is 17 
proposed to transform features from the global scope to the local. Unlike previous methods that require complicated 18 
designs such as negative pairs and momentum encoders, our ULD-Net benefits from the simple Siamese network that 19 
relies solely on stop-gradient operation preventing the network from collapsing. We also utilize the feature separability 20 
constraint for more representative embeddings. Experimental results show that our ULD-Net achieves the best results of 21 
context-based unsupervised methods and comparable performances to supervised models in shape classification and 22 
segmentation tasks. On the linear SVM classification benchmark, our ULD-Net surpasses the best context-based method 23 
STRL by 1.1% overall accuracy. On tasks with fine-tuning, our ULD-Net outperforms STRL under fully-supervised and 24 
semi-supervised settings, in particular, 0.1% accuracy gain on ModelNet40 classification benchmark, and 0.6% mIoU gain 25 
on ShapeNet Part segmentation benchmark.  26 

  27 

 28 

1. INTRODUCTION 29 

As a common 3D representation, the significant advantage of point 30 
cloud data over other representations (e.g. volumetric grids, 31 
meshes, depth images) lies in its easy availability. With the 32 
advancement of 3D acquisition technologies, various types of 3D 33 
scanners, LiDARs, and RGB-D cameras (e.g. cameras in Kinect and 34 
Apple devices) are becoming ever more accessible, thus point cloud 35 
data can be quickly acquired without triangulating data into grids or 36 
voxel form. Hence, point cloud data is ideal for wide-ranging 37 
applications such as autonomous driving[1], building information 38 
modeling (BIM)[2], and digital preservation of ancient artifacts[3]. 39 

Recently, deep learning approaches became a dominant source 40 
in point cloud analysis in resolving various problems, including 3D 41 
shape classification, segmentation, object detection and tracking, 42 
registration, and so on. The remarkable advances in point cloud 43 

shape understanding rely on the large scale of labeled training data, 44 
and the performance improves logarithmically based on the size of 45 
annotated training data. The tedious and resource-consuming 46 
annotation process became a bottleneck for sustainable success due 47 
to the following reasons: (1) because of the sparsity, annotations for 48 
low-resolution point clouds are always ambiguous; (2) with the 49 
huge amount of points in dense objects which can reach hundreds 50 
of millions, point-by-point annotation comes with significant costs; 51 
(3) the annotation for 3D objects are inherently more error-prone 52 
than for 2D instances as its high complexity; (4) few works have 53 
focused on building automatic annotation tools for 3D point clouds, 54 
existing tools are still in the early stage manifested in their low 55 
accuracy and inconvenience. 56 

In order to resolve the above practical difficulties, researchers 57 
explored unsupervised representation learning (URL) in the 3D 58 
point cloud analysis field based on the easy availability of unlabeled 59 



data. In common URL settings, the network learns knowledge from 60 
pretext tasks without supervision in the pre-training stage, then 61 
transfers the learned knowledge to other downstream tasks. Most 62 
existing works are based on generation tasks[4-8] that rely heavily 63 
on the specific architecture designation, such as folding-based 64 
decoders for completion and reconstruction tasks, the performance 65 
in downstream tasks degenerates when using a general MLP-based 66 
decoder. Meanwhile, generation-based tasks concentrate on 67 
geometric structures which results in poor transferability on scene-68 
level datasets. To eliminate the dependence on such specific 69 
components and improve model transferability to real-world 70 
scenes, several recent works consider context similarities[9-16] 71 
between samples to explore generic methods for URL. 72 

Inspired by the huge success of self-supervised learning in 2D 73 
computer vision domain, several efforts have been devoted to 74 
exploring context similarities in 3D point clouds based on Siamese 75 
networks. Most works built on top of contrastive learning rely on 76 
negative samples, Info3D[15] proposes to learn representations by 77 
maximizing mutual information between 3D objects and their local 78 
parts. Towards more discriminative features from local patches, Du 79 
et al.[16] introduced a hard negative sampling strategy into 80 
architecture. PointContrast[9] extracts dense correspondences 81 
across two views of scene point clouds for point-level contrastive 82 
learning. Without the requirements of negative samples, STRL[10] 83 
extends BYOL[17] from 2D image processing to 3D point cloud 84 
analysis by learning features between original objects and their 85 
augmented views. However, previous works conduct unsupervised 86 
pre-training with complicated designations, such as negative pairs 87 
sampling[9], memory banks[15], and momentum encoders[10]. 88 
Additionally, most methods individually considered context 89 
similarities between transformed views at the instance level[10, 15, 90 
16] or point level [9], separately maintaining consistency at both 91 
two levels was not taken into account.  92 

To this end, we present a dense representation learning 93 
approach named 3D Unsupervised Learning by Dense Similarity 94 
Learning with Equivariant-Crop (ULD-Net) based on three 95 
common-sense intuitions. First, purely considering instance-level 96 
similarity dismisses local spatial information, while learning point-97 
level similarity cannot extract representative abstract semantic 98 
information for the entire object. Thus, we jointly optimize the 99 
model at both levels, which helps to learn sufficient knowledge for 100 
downstream tasks. Second, the two branches of the network output 101 
point-level features within different scopes, while point-level 102 
similarity learning aims to maximize corresponding features across 103 
views, the features should share the same scopes with one-to-one 104 
correspondence. Therefore, we propose an Equiv-Crop module 105 
equivariant with Cropping transformation to map the global 106 
features to the local scope. Third, it is proved that without 107 
redundant components which raise the computational cost, a 108 
simple stop-gradient design can get the network rid of collapse[18]. 109 
Using these inductive biases alone, we can train a Siamese network 110 
with a stop-gradient operation on top of SimSiam[18] to output 111 
point embeddings, with objectives maximizing similarities between 112 
embeddings across local-global views, aiming at pre-training dense 113 
representations with strong transferability in downstream tasks.  114 

The process of the proposed method is illustrated in Fig. 1. The 115 
pair of augmented point clouds (shown as blue dots) in global-local 116 
views are processed by the same encoder network and a projector 117 
network to extract features (shown as pentagons or crosses in other 118 
colors).  119 

 120 
Fig. 1.  An illustration of the proposed method. 121 

The Equiv-Crop module is applied to the global view side to 122 
project global features to the local scope. The predictor network is 123 
applied on one side, and the stop-gradient operation is on the other 124 
side. After taking dense similarity learning as a pretext task during 125 
pre-training, the trained encoder network transfers the learned 126 
knowledge to downstream tasks such as shape classification, part 127 
segmentation, semantic segmentation, and so on. We theoretically 128 
prove the intuitions can improve the performance through serial 129 
experiments conducted, the method we proposed achieves 130 
competitive results to existing methods. Our contributions can be 131 
summarized as follows: 132 
(1) We propose a novel method for 3D point cloud unsupervised 133 

representation learning, which learns dense features by 134 
maximizing their local-global similarities at the point level and 135 
instance level, eliminating the need for negative samples or 136 
other complicated designs. 137 

(2) We introduce a novel point mapping strategy named Equiv-138 
Crop for correspondence across views with local and global 139 
scopes, to provide the foundation for point-level feature 140 
learning. The local scope is produced by a Cropping operation, 141 
and two augmented views are generated by integrated with an 142 
Inv-Aug strategy while the robustness is boosted. 143 

(3) We present a feature separability constraint that maximizes 144 
the separability of feature vectors from different dimensions 145 
while boosting the representability of features. 146 

2. RELATED WORKS 147 

A. Deep architectures for point cloud processing 148 

The advances in deep learning and learning-based point descriptors 149 
have been helpful to the impressive performance of recent point 150 
cloud processing for several 3D understanding tasks. Existing 151 
methods focus on alleviating the difficulty caused by the irregularity 152 
of 3D point clouds, with most works extracting features directly 153 
from points. 154 

PointNet[19] is the seminal work using deep learning that 155 
performs directly on raw point clouds, which achieved input order 156 
invariance by symmetric functions. Since PointNet learns features 157 
independently through point-wise MLP for each point, later works 158 
paid attention to capturing local structural information using 159 
various methods. PointNet++[20] learns local features by a 160 
hierarchical network, which is stacked by set abstraction layers. 161 
PointCNN[21] designed discrete convolutional kernel χ-conv 162 
particular for point clouds. Considering each point in point clouds as 163 
a vertex, DGCNN[22] and RGCNN[23] construct graphs in spatial 164 
and spectral space. Kd-Net[24] learns features by constructing 165 
hierarchical data structures based on K-d trees. Recently, 166 
transformer-based methods[25, 26] are proposed for long-range 167 



visual dependencies learning. In this work, common architectures 168 
are suitable to be utilized as backbone networks because of our 169 
flexible designation. 170 

B. Deep architectures for point cloud processing 171 

URL is drawing increasing interest owing to its superiority in 172 
resolving the annotation bottleneck. Since annotations for 3D data 173 
take higher costs than 2D vision data, 3D tasks are supposed to 174 
benefit much more from URL. However, compared with Natural 175 
Language Processing (NLP) and 2D vision, the unsupervised pre-176 
text task defined for 3D point cloud data is much less mature. 177 

Numerous pretext tasks have been proposed for strong 178 
presentation acquisition with specific objectives, which can be 179 
broadly divided into 2 categories: generation-based and context-180 
based tasks. Generation-based tasks take point clouds themselves 181 
as supervised information, including reconstructing original input 182 
from low-dimensional vectors[4, 5], generating new point clouds 183 
similar to training samples from random noise[6], up-sampling 184 
point clouds from sparse to dense[7], and completing missing 185 
parts[8]. Learning features through context-based methods is 186 
another rising research direction, including performing instance 187 
discrimination[9, 10], solving 3D jigsaw puzzles[11], predicting 188 
rotation angles[12], predicting the next point in the sequence[13], 189 
and disentangling the mixed point clouds[14]. Considering multi-190 
level similarity, a pretext task defined as optimizing the cosine 191 
similarities at both the instance level and point level is proposed, 192 
accompanied by a feature separability constraint aiming at more 193 
representative features. 194 

C. Siamese neural networks 195 

Siamese network consists of two identical artificial neural networks 196 
for comparing the projected representations of the two input 197 
vectors. The key challenge in siamese methods is how to avoid 198 
collapsing solutions. SimCLR[27] and MoCo[28] proposed based on 199 
the core idea of contrastive learning that drags positive sample pairs 200 
and pushes negative sample pairs away. Different from comparing 201 
samples in the current batch in SimCLR, MoCo builds a dynamic 202 
dictionary with a queue and a moving-averaged encoder to get rid 203 
of the dependence on large batch size and to improve the 204 
consistency of the queues. Clustering-based methods construct 205 
Siamese networks with clustering intergraded while achieving 206 
competitive results without a memory bank. Specifically, SwAV[29] 207 
solves degenerate solutions through computing cluster 208 
assignments from one view playing as negative samples relying on 209 
the Sinkhorn-Knopp algorithm. Asymmetric methods prevent 210 
features from collapsing using asymmetric architecture. BYOL[17] 211 
uses a momentum encoder accompanied by stop-gradient and 212 
moving-average, while SimSiam[18] removes the momentum 213 
encoder and keeps minimum core architecture as an elegant 214 
realization. Inspired by SimSiam, we build our network based on 215 
the Siamese architecture with a stop-gradient operation as its 216 
computational advantage. 217 

3. METHOD 218 

The overall pipeline of our ULD-Net is depicted in Fig. 2. Taking 219 
unsupervised point cloud datasets as source data, our fundamental 220 
idea is to train an encoder network by modeling dense consistency 221 
between local-global features from transformed views to extract 222 
representations for better transferability on downstream tasks.  223 
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Fig. 2. The overall overview of the proposed pre-training method. 225 

For each point cloud object P , we first transform the original 226 
input into two random augmented views in the global and local 227 
scope by Inv-Aug and Cropping transformations. Then, we encode 228 
the point clouds to generate feature maps in high dimensional space 229 

by a weight-shared encoder network f . Inspired by SimSiam, we 230 

promote the representational ability of the encoder by minimizing 231 
the dissimilarities between feature maps through dense similarity 232 
learning. We integrate the instance-level (Fig. 2(a)) and point-level 233 
(Fig. 2(b)) similarity learning into a unified framework, and we also 234 
utilize feature separability constraint (Fig. 2(c)) for more 235 
discriminative features. Taking our approach to pre-train an 236 
encoder network from unlabelled data, the learned encoder can be 237 
transferred to various downstream tasks for feature extraction. 238 

A. Views and Features Generation 239 

Given each input point cloud N 3P   with N elements, we 240 

transform its geometric features (XYZ coordinates) by Inv-Aug and 241 

Cropping operations with random factors. Inv-Aug is a collection of 242 

data augmentations consisting of rotation, translation, scaling, and 243 

jittering. We start the transformation with two randomly Inv-Aug 244 

augmentations (1)I  and (2)I  that output two augmented point 245 

clouds (1)
1 ( )A I P and (2)

2 ( )A I P . Regarding one augmented 246 

point cloud 1A  as the global view 1globalV A  of the input point 247 

cloud P  (as in Eq.(3)), we conduct a Cropping operation C  on 248 

another augmented point cloud to generate the local view. Different 249 

from Inv-Aug which keeps the object complete, the Cropping 250 

operation transforms points to a random local scope. 251 

1. Cropping Operation 252 

The Cropping operation C  consists of two steps conducted at the 253 

augmented point set 2A . First, we compute the indices of at least 50% 254 

of points inside the coordinate range defined by a random 3D 255 

cuboid, with computed indices [1,..., ] },{ , [1 ..., ]im Lij N   , 256 

the selected L  points 2[ ]A m  inside a cuboid local scope are kept as 257 

downsampled points. Since the point sequence is invariant to Inv-258 

Aug operations (1)I  and (2)I , the downsampled point set 2[ ]A m  259 

with L  elements corresponds exactly to points with the same 260 
indices m  in the global scope point set globalV  (i.e. 1A ). Second, we 261 

upsample the downsampled point set 2[ ]A m  from size L  to the 262 

predefined input size N  of the encoder network. We choose 263 
inverse distance weighted average based on k nearest neighbors (as 264 
in Eq.(1), in default we use 2, 3p K  ) for interpolation, outputs 265 

upsampled point set regarded as local view (as in Eq.(4)), 266 
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where 3N K
knnA    denotes the K  nearest neighbors of N  268 

points in the entire point set 2A , the neighbors are searched in the 269 

downsampled point set 2[ ]A m , ( )d   denotes the euclidean 270 

distance between two points, and rw  is computed for the weight of 271 

the thr  neighbor: 272 
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In conclusion, the correspondence between two scales is 274 
constructed by downsampled indices m  and the K  neighbors 275 

knnA . Thus, two different views in local and global scope with 276 

transformation in Eq.(3)(4) are produced.  277 

 (1)
1 ( )global IV A P   (3) 278 

 (2)
2( ) ( ( ))localV C A C I P   (4) 279 

2. Dense Feature Map Generation  280 
The global-local views from the same point cloud are then 281 
processed by a backbone encoder network f  with parameters  . 282 

The encoder shares the same weights between views. For local 283 
input localV , the encoder f  computes a point-level feature map 284 

( )pt
local localF f V  including representations for each point in the 285 

local view localV  , the feature vector for the thi  point is noted as 286 

[ ]pt
local iF . Simultaneously, f  yields a high-dimensional vector 287 

local  after max-pooling describing the entire local view localV  at 288 

the instance level. Following the same computation pipeline with 289 

local features, a point-level feature map ( )pt
global globalf VF   and an 290 

instance-level representation global  from the global view are 291 

generated. 292 

 ( ( ))global globalmaxpooling f V   (5) 293 

 ( ( ))local localmaxpooling f V   (6) 294 

3. Equiv-Crop 295 

Denoting high dimensional features from global and local view 296 

without max-pooling as , N D
global localF F  , where D  denotes 297 

the number of feature dimensions, global view features globalF  can 298 

be transformed to local scope through a module EC  equivalent to 299 
Cropping operation. Since the network is permutation invariant, the 300 
sequences of output features correspond to network input 301 
sequences. Namely, there is a one-to-one correlation between the 302 

input point and output feature. For example, the thi  point 303 

[ ]globalV i  in the global view is represented by the feature vector 304 

[ ]global iF . Based on such a principle, global features globalF  can be 305 

directly mapped into the corresponding local scope using the same 306 

correspondence in the Cropping operation done in views 307 
transformation. Specifically, we gather the global features of points 308 
in the same local cuboid scope in Cropping following the same 309 
downsampling and upsampling steps. First, we downsample the 310 
features by selecting indices m  saved in Cropping, the 311 

downsampled features [ ]globalF m  represent features of points in 312 

downsampled points 2[ ]A m  in Cropping. Then, with the 313 

downsampled features [ ]globalF m , we upsample the features from 314 

the searched K nearest neighbors knnA  same as in Cropping, 315 

 
2

1

2
1

[ ] [ , ]
( [ ])

[

( )
, [1,..., ]

( )]

K

r knn
r

global K

r
r

w
E

A i F i
i

r
C F

i
N

w
i

A





 



 (7) 316 

where N K D
knnF    denotes features of neighbors knnA , ( )d 317 

denotes the euclidean distance between two vectors, and rw  318 

denotes the weight of the thr  neighbor. The Equiv-Crop module 319 
then transforms global features into local scope defined in Cropping. 320 

B. Dense Similarity Learning 321 

To achieve sophisticated similarity measurement, we learn local-322 
global consistency through dense similarity learning. Solely 323 
learning consistency between local and global views at the instance 324 
level would cause most of the spatial information to be discarded 325 
during pooling. To tackle this question, we jointly learn instance-326 
level and point-level similarities. Moreover, for point-level feature 327 
learning, we utilize the Equiv-Crop module in Sec. A.3 towards 328 
mapping point embeddings from the global scope to the local one. 329 

1. Instance-Level Similarity Learning 330 

We learn instance-level similarity from representations local  and 331 

global , the pipeline is shown in Fig.2(a). We first transform features 332 

by the same projector network insq  , which is a three-layer MLP 333 

head output with features ( )ins
global globalz q   and 334 

( )ins
local localz q  . Then, a predictor network insh  transforms the 335 

projected feature from one view to predict another, outputs 336 

predictions ( )ins
global globale h z  and ( )ins

local locale h z . 337 

Meanwhile, a stop-gradient operation is applied to the projected 338 
features from another view. We symmetrically minimize the 339 
distance of feature maps and predictions from another view: 340 

 
1 1

D( ,sg( )) D( ,sg( ))
2 2instance local global global localL e z e z   (8) 341 

where sg  is the stop-gradient operation to avoid the outputs of the 342 

network collapsing to constant and D( ) in Eq.(9) is a distance 343 

function measuring negative cosine similarity in high-dimensional 344 
feature space: 345 
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where 2|| ||  denotes 2l  normalization. 347 



2. Point-Level Similarity Learning 348 

We formulate point-level similarity learning as shown in Fig.2(b) to 349 
maximize the similarity of point predictions. Input with point-level 350 

feature maps pt
localF  and pt

globalF , following the same pipeline with 351 

instance-level similarity learning, a projector ptq  is used to 352 

transform the point-level features first. For each point, we predict 353 
its feature from another view. However, due to the input point 354 

represented by thi  feature mismatch between local and global 355 
scope, it is incompatible with common sense to predict directly 356 
between two features from the same indices. To bridge the gap, an 357 
Equiv-Crop module EC  maps the projected features from global 358 
to local scope, and the projected features are noted as 359 

( ( ))pt pt pt
global globalJ EC q F , ( )pt pt pt

local localJ q F . After that, the 360 

predictions ( )pt pt pt
global globalS h J  and ( )pt pt pt

local localJS h for each 361 

point are outputted from the point-level predictor pth . 362 
We symmetrically maximize the similarity between the 363 

projected feature for the thi  point and its prediction: 364 
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 (10) 365 

C. Feature Separability Constraint 366 

It is common that projected features and predictions (such as367 

[ ]pt
globalJ i  and [ ]pt

localS i ) contain different information after random 368 

augmentations, but similarity learning forces these embeddings to 369 
be close to each other, which leads to a risk of features from different 370 
dimensions degenerating to the same value. To address the 371 
degenerating issue, besides the stop-gradient operation, we further 372 
propose a feature separability constraint as illustrated in Fig.2(c) to 373 
boost the expressiveness of features. 374 

The channel embeddings are obtained by the sum of 375 
multiplication between the feature maps and predictions: 376 

 [ ] ( )[ ]
N

ch pt pt
global global global

i

F J i EC F i   (11) 377 

 [ ] [ ]
N

ch pt pt
local local local

i

F J i F i   (12) 378 

where ,ch ch D D
global localF F   , D  and D  represents the number 379 

of output feature channels in the predictor and encoder. 380 
Similar to similarity learning, we transformed the embeddings by 381 

a projector composed of an MLP head chq  and predictor chh  382 

output embeddings ( )ch ch ch
global globalJ q F  , ( )ch ch ch

local localq FJ 383 

and predictions ( )ch ch ch
global globalS h J , ( )ch ch ch

local localS h J . By using 384 

info-NCE loss[30], the similarities of features in different channels 385 
decreased, which leads to higher separability. Specifically, we 386 
optimize the feature separability by Eq. (13): 387 

 

1
( ,sg( ))

2
1

              ( ,sg( ))
2

ch ch
separability info NCE local global

ch ch
info NCE global local

L JSL

L S J








 (13) 388 

where info NCEL   is the info-NCE loss as: 389 
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where   denotes the temperature coefficient of 0.1 in default, R  391 
denotes the number of dimensions of the prediction feature S .  392 

4. Experiments and Results 393 

A. Datasets 394 

To validate the effectiveness and transferability of our method, 395 
three benchmarks (ModelNet40[31], ShapeNet part[32], and 396 
S3DIS[33]) are used in the experiments. In the pre-training stage, 397 
ModelNet40 is used for all experiments, ShapeNet55 is additionally 398 
used for linear evaluation comparison. For downstream tasks, we 399 
use ModelNet40 benchmark for shape classification, ShapeNet Part 400 
benchmark for shape part segmentation, and S3DIS benchmark for 401 
scene semantic segmentation. 402 

ModelNet40. ModelNet40 includes 12,311 synthesized 3D 403 
objects (divided into 9,843 training samples and 2,468 testing 404 
samples) from 40 categories. We downsample each object to 2,048 405 
points whose XYZ coordinates normalized into a unit sphere 406 
following the pre-processing method from PointNet[19]. 407 

ShapeNet Part. ShapeNet55[34] contains 57,748 synthetic 3D 408 
shapes from 55 categories. ShapeNet Part benchmark includes 409 
16,881 shapes of 16 categories selected from ShapeNet55. Each 410 
sample is annotated with 2 to 5 parts, part labels for all categories 411 
amounted to 50. Intersection of Union (IoU) is widely used for 412 
segmentation evaluation that measures the ratio between point-413 
wise ground truth and prediction. For the part segmentation task, 414 
we compute category mIoU by averaging IoUs over parts of the 415 
same object category, instance mIoU is obtained by averaging over 416 
all test shapes. 417 

S3DIS. Stanford 3D Indoor Spaces (S3DIS) dataset contains 3D 418 
scans of 6 different places including 271 rooms, which cover over 419 

26,000m . Each point is represented by a 9-dimensional vector 420 

consisting of XYZ coordinates, RGB color values, and normalized 421 
location, individual point is labeled with 13 semantic categories. We 422 
use the same pre-processing procedures as the original work, each 423 
room is split into blocks with 1 1m m  area, and each block contains 424 
4,096 points sampled. To evaluate semantic segmentation 425 
performance, mIoU is computed by averaging IoUs over all points. 426 

B. Implementation Details 427 

Architecture Parameters. For a fair comparison with previous 428 
methods, DGCNN backbone is used as the default encoder network 429 
which outputs features with 1,024 dimensions. All projectors and 430 
predictors are designed with the same architecture. Specifically, 431 
each projection MLP head consists of 3 fully connected layers with 432 
dimensions of [512,256,256], each prediction MLP head consists of 433 
2 fully connected layers with dimensions of [512,256], each layer 434 
has batch normalization applied, and LeakyReLU activation with a 435 
negative slope of 0.2 is used except for the final output layer. For 436 
jointly learning instance-level similarity, point-level similarity, and 437 
feature separability, our ULD-Net optimizes the total loss 438 

1 2 3instance point separabilityL L LL    , to balance the significance 439 



of all tasks, we choose 1 2 100    and 3 10   based on the 440 

numbers of each loss to keep them in the same order of magnitude. 441 
Pre-training Setup. We follow the settings of STRL in 442 

unsupervised pre-training experiments. We implemented our 443 
work with the deep learning library PyTorch using a single TITAN 444 
RTX GPU for all experiments. Specifically, the Adam optimizer is 445 
used in our model with an initial learning rate of 0.001, the learning 446 
rate is decayed by 0.7 every 20 epochs, and the batch size is 24 by 447 
default. We pre-train ULD-Net for 200 epochs on ModelNet40. 448 

Fine-tuning Setup. As an end goal in URL, we verify the 449 
effectiveness of the pre-trained features transferred to new tasks in 450 
a fully-supervised fashion. For 3D shape classification on 451 
ModelNet40, we use a batch size of 24 for training and testing with 452 
250 epochs, the SGD optimizer is used with an initial learning rate 453 
of 0.1, momentum 0.9, and weight decay 0.0001, and the learning 454 
rate is decayed with a cosine annealing scheduler. Slightly different 455 
from the above settings for the classification task, the batch size 456 
used for 3D part segmentation on ShapeNet Part is 16 and we train 457 
the network for 100 epochs with Adam optimizer for 3D semantic 458 
segmentation on S3DIS. 459 

C. Downstream Results 460 

1. Linear evaluation for Shape Classification 461 

For 3D shapes classification, we train a linear SVM (Support Vector 462 
Machine) on the target dataset ModelNet40 to evaluate the 463 
effectiveness of the learned instance-level features following the 464 
common protocol in prior URL works[8, 10, 11]. For the SVM 465 
classifier, the input features are obtained after the pre-trained 466 
encoder network with the following pooling layer, and the weights 467 
of the feature extractor are frozen during evaluation. Following the 468 
settings in DGCNN classification network, the pooling layer outputs 469 
concatenated features after max-pooling and average-pooling 470 
operations. The classification results compared with the state-of-471 
the-art are shown in Table 1, all methods tabulated are 472 
implemented with DGCNN backbone as a feature extractor for a fair 473 
comparison. As shown in the table, the proposed method achieves 474 
91.9% and 92.0% overall accuracy after pre-trained on ShapeNet55 475 
and ModelNet40 dataset, which outperforms existing unsupervised 476 
method STRL[10] by 1.0% and OcCo[8] by 2.8%.  These results 477 
suggest that the features attained by our pre-training method are 478 
discriminative that can easily achieve competitive performance 479 
even with little effort of training on SVM. 480 

Table 1. Classification accuracy results (%) with linear SVM in 481 
URL methods on ModelNet40 (“OA” denotes overall accuracy.) 482 

Pre-training Dataset Method OA 

ShapeNet 

FoldingNet [4] 
Du et al. [16] 
Jigsaw3D [11] 
Rotation3D [12] 
STRL [10] 

88.4 
89.6 
90.6 
90.8 
90.9 

Ours 91.9 

ModelNet40 

FoldingNet [4] 
Jigsaw3D [11] 
MAP-VAE [5] 
OcCo [8] 
Ours 

84.4 
87.8 
90.2 
89.2 
92.0 

Towards a better understanding of the capability of our method 483 
proposed, we visualize the learned features on the test dataset of the 484 
ModelNet10 as illustrated in Fig.3, which is compared with features 485 
from a randomly initialized encoder network. Using T-SNE (t-486 
distributed stochastic neighbor embedding)[35] to project the 487 
instance-level high-dimensional features in 2D space, we observe 488 
that the learned features from instances of different categories are 489 
separable, except dressers and nightstands, which are difficult to 490 
distinguish even by a human. Compared with the projected features 491 
from random initialization, our pre-trained are dragged to further 492 
distances between features of distinct categories. Since the random 493 
initialized features can be regarded as the prior of the encoder 494 
network, the comparison proves our pre-training method can learn 495 
knowledge of 3D shapes without supervision.  496 

Random Initialization Ours
 497 

Fig. 3. Visualization of pre-trained instance-level features. 498 

2. Supervised Fine-tuning for 3D Shape classification 499 

Further fine-tunes the encoder network on ModelNet40 without 500 
freezing, resulting in better classification accuracy. Following a 501 
common fine-tuning pipeline in URL methods, after an 502 
unsupervised pre-training stage aimed at maximizing dense 503 
similarities, we take the pre-trained encoder network parameters 504 
as initialization for the encoder network used in transfer learning, 505 
then optimize the network by specific objective for classification 506 
task in a supervised fashion. To produce predictions for the 507 
classification task, we train a classification MLP head during fine-508 
tuning along with the encoder network, the classification head takes 509 
instance-level features after pooling as input and output with 510 
classification scores for each object towards supervised validation 511 
on ModelNet40. Comparisons of fine-tuned classification results are 512 
illustrated in Table 2. 513 

Table 2 ． Comparisons of our fine-tuned classification 514 
accuracy (%) result against other methods on ModelNet40 515 
(“Sup.” denotes supervised.) 516 

Method Sup. OA 
PointNet [19]  89.2 
RGCNN [23]  90.5 
PointNet++ [20]  90.7 
KD-Net [24]  91.8 
PointCNN [21]  92.2 
DGCNN [22]  92.2 
Point Cloud Transformer [26]  93.2 
PointTransformer [25]  93.7 
Jigsaw3D [11]  92.4 
Info3D [15]  93.0 
OcCo [8]  93.0 
FoldingNet [4]  93.1 
STRL [10]  93.1 
Ours  93.4 
As shown in Table 2, after fine-tuning from our pre-trained model, 517 

the proposed method achieves an additional 1.0% accuracy gain 518 



over the original DGCNN trained from randomly initialized 519 
parameters (93.2% vs. 92.2%), which suggests our pre-training 520 
method can boost the ability of the feature extractor. Our method 521 
outperforms unsupervised methods OcCo and STRL by 0.2% and 522 
0.1% in terms of overall accuracy and achieves the best fine-tuned 523 
performance on ModelNet40. The results indicate that our ULD-Net 524 
can attain a comparable performance with the state-of-the-art fully 525 
supervised methods. 526 

Our method accelerates the convergence of the encoder 527 
framework during the fine-tuning stage. As shown in Fig. 4, 528 
compared with the random initialization, the loss number of our 529 
method keeps lower than random initialization at about 0.2 during 530 
training and convergence after fewer epochs. 531 

532 
Fig. 4. Convergence curves during fine-tuning. 533 

3. Semi-supervised Fine-tuning for 3D Shape Classification 534 

We further evaluate our pre-trained model on the shape 535 
classification task under a semi-supervised setting. We use the same 536 
setting as STRL and report the overall accuracy on ModelNet40 as 537 
shown in Table 3. Specifically, we reduce the annotated input 538 
shapes to 1%, 5%, 10%, and 20% of the training data, and at least 539 
one shape is selected for each category. Then we evaluate the model 540 
fine-tuned by the reduced training data on the full test dataset. The 541 
results show that our model surpasses the randomly initialized 542 
model by 2.2% and 1.7% when 1% and 20% of training shapes 543 
were sampled, and our ULD-Net slightly outperforms STRL when 544 
the sampling ratio of 1%, 10%, and 20%, indicates our pre-training 545 
method improves annotation efficiency. 546 

Table 3. Fine-tuned results (%) under a semi-supervised 547 
setting 548 

Method 1% 5% 10% 20% 
DGCNN [22] 58.4 80.7 85.2 88.1 
STRL [10] 60.5 82.7 86.5 89.7 
Ours 60.6 82.5 86.8 89.8 

4. Supervised Fine-tuning for 3D Shape part segmentation 549 

To validate the effectiveness of fine-grained point-level features 550 
gained from our method, we fine-tune the pre-trained network for 551 
the part segmentation task. Different from classification fine-tuning 552 
only transfers parameters from the encoder network, segmentation 553 
fine-tuning uses parameters from the pre-trained encoder and its 554 
attached point-level projector. We fine-tune them on ShapeNet Part 555 
dataset to verify the performance of our ULD-Net on the part 556 
segmentation task. The quantitative results compared with the 557 
state-of-the-art URL and supervised methods are shown in Table 4. 558 
It shows that our ULD-Net shows the best performance (85.7% 559 
instance mIoU) among other URL approaches and achieves top 560 

performance in 6 categories such as Aeroplane, Car, and Knife. Since 561 
ShapeNet Part is a long-tailed dataset, the instance mIoU is mostly 562 
decided by shapes of large amounts (Aeroplanes, Chairs, Lamps, 563 
Tables, etc.), which leads to the unbalance performance on different 564 
categories of shapes. Compared with supervised methods, we also 565 
achieve comparable results. 566 

The segmentation results of all shapes are qualitatively 567 
illustrated in Fig.5. These visualization results show our method can 568 
segment one shape to clear parts close to the ground truths. 569 

Ground
Truth

Ours

Ground
Truth

Ours

 570 
Fig. 5. Qualitative results on ShapeNet Part dataset. 571 

 Furthermore, we compare our ULD-Net with STRL and OcCo on 572 
shapes including aeroplanes, bags, and cars as illustrated in Fig.6, 573 
which shows ULD-Net captures more local details than STRL and 574 
OcCo. In confusing regions annotated with blue bounding boxes, 575 
containing points in the intersection of the main body and other 576 
parts of different categories, such as the tail of aeroplanes 577 
demonstrated in Fig.6 (a), the handle of bags in Fig.6 (b) and the roof 578 
of cars in Fig.6 (c), shows that our method distinguishes such 579 
regions better. 580 

(a)

(b)

(c)

Groud Truth OcCo STRL Ours

 581 
Fig. 6. Visual comparison of part segmentation on ShapeNet Part. 582 

5. Supervised Fine-tuning for 3D Semantic Segmentation 583 

Transferring features pre-trained on synthetic CAD object models 584 
to real-world segmentation tasks is considered more challenging 585 
than tasks on synthetic shapes. To elucidate this problem, we also 586 
test our method for the indoor semantic segmentation task on 587 
S3DIS dataset to validate the cross-domain generalizability of our 588 
pre-trained features to a real-world dataset.  589 



Table 4. Fine-tuning part segmentation mIoU results (%) on ShapeNet Part dataset ( “Ins.” denotes instance mIoU.)590 
591 

Shapes 
Supervised Method Unsupervised Method 
DGCNN 
[22] 

RSCNN 
[36] 

PCT 
[26] LGAN [6] Method in 

[16] 
Jigsaw3D 
[11] OcCo [8] STRL [10] Ours 

Ins. 85.2 86.2 86.4 57.0 82.3 85.3 85.5 85.1 85.7 
Aero 84.0 83.5 85.0 54.1 82.1 84.1 84.4 83.7 84.7 
Bag 83.4 84.8 82.4 48.7 74.5 84.0 77.5 80.3 82.8 
Cap 86.7 88.8 89.0 62.6 83.6 85.8 83.4 87.6 83.8 
Car 77.8 79.6 81.2 43.2 74.9 77.0 77.9 77.7 78.3 
Chair 90.6 91.2 91.9 68.4 87.9 90.9 91.0 90.9 90.9 
Earphone 74.7 81.1 71.5 58.3 72.4 80.0 75.2 78.0 77.0 
Guitar 91.2 91.6 91.3 74.3 89.9 91.5 91.6 91.4 91.3 
Knife 87.5 88.4 88.1 68.4 85.4 87.0 88.2 87.7 88.2 
Lamp 82.8 86.0 86.3 53.4 79.1 83.2 83.5 83.7 83.8 
Laptop 95.7 96.0 95.8 82.6 95.2 95.8 96.1 96.1 95.6 
Motor 66.3 73.7 64.6 18.6 67.3 71.6 65.5 66.7 68.6 
Mug 94.9 94.1 95.8 75.1 93.3 94.0 94.4 95.0 94.3 
Pistol 81.1 83.4 83.6 54.7 81.0 82.6 79.6 81.2 80.6 
Rocket 63.5 60.5 62.2 37.2 58.2 60.0 58.0 58.2 61.9 
Skateboard 74.5 77.7 77.6 46.7 74.0 77.9 76.2 75.3 75.1 
Table 82.6 83.6 83.7 66.4 79.2 81.8 82.8 82.1 83.4 

592 
Using the pipeline similar to part segmentation, we transfer the 593 

parameters of the encoder and point-level projector to supervised 594 
fine-tuning for the semantic segmentation task.We test our model 595 
under 6-fold cross-validation over the 6 areas as in the original 596 
work[33]. As the quantitative results summarized in Table 5, our 597 
ULD-Net achieves the best segmentation result with 85.5% overall 598 
accuracy and 59.2% mIoU, which surpasses the state-of-the-art 599 
method OcCo by 0.4% overall accuracy and 0.7 mIoU. Compared 600 
with existing URL methods, these results demonstrate better 601 
transferability of our ULD-Net from synthetic shapes to real-world 602 
scene datasets. It is observed that our results even surpass the 603 
supervised PointNet, PointNet++, and DGCNN, and also achieve 604 
competitive performance with other supervised models. 605 

Table 5. Semantic segmentation results (%) on S3DIS dataset. 606 
Method Sup. OA mIoU 
PointNet [19]  78.6 47.6 
PointNet++ [20]  81.0 54.5 
PointCNN [21]  88.1 65.4 
DGCNN [22]  84.1 56.1 
Jigsaw [11]  84.4 56.6 
OcCo [8]  85.1 58.5 
Ours  85.5 59.2 
We show qualitative results of S3DIS indoor semantic 607 

segmentation by visualizing selected rooms in Fig. 7. Empirically, 608 
we observe that our network is able to understand and classify 609 
semantic objects in a real-world scene, and our segmentation 610 
results are close to the ground truth. 611 
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Ground Truth Ours  612 
Fig. 7. Visualization of semantic segmentation results on S3DIS Dataset. 613 

D. Ablation Study 614 

To investigate the effectiveness of our key components in ULD-Net, 615 
we study the impact of adopting different combinations of losses 616 
and transformations during the pre-training stage by validating the 617 
downstream SVM classification results using their pre-trained 618 
features on ModelNet40. 619 

1. Transformations 620 

We analyze the effectiveness of different transformations in Inv-621 
Aug and Cropping for view generation used in the pre-training stage. 622 
We remove certain transformations to produce augmented views 623 
when pre-training and validate the implication with SVM. As 624 
summarized in Table 6, our full model 1A  uses all transformations 625 

and achieves the best result of 92.0%. Without any transformations 626 
(model 1B ), the network inputs of the two branches are exactly the 627 



same, which makes the network overfits pre-training samples due 628 
to too many task-irrelevant detailed features captured, hence the 629 
classification result degenerates to 88.0%. The result reduces when 630 
one transformation is removed, proving that each adopted 631 
transformation schedule boosts the performance of pre-trained 632 
features. Among transformations, removing the Cropping 633 

transformation C  (model 1C ) affects the performance the most 634 

by a 2.4% descent (92.0% vs. 89.6%) compared with the model  635 

1A . Removing each transformation in Inv-Aug including Rotation  636 

(model 1D ), Translation (model 1E ), Jittering (model 1F ), and 637 

Scaling (model 1G ), the performance degenerates to 91.0%, 91.0%, 638 

91.2%, and 91.5% respectively, which indicates the importance of 639 
each transformation is decreasing by the above order. 640 

Table 6. Results (%) from pre-trained features with different 641 
transformations. (“Rot.” Denotes Rotation, “Trans.” Denotes 642 
Translation, “Scal.” Denotes Scaling, “Jit.” Denotes Jittering) 643 

Model C Rot. Trans. Scal. Jit. OA 
1A       92.0 

1B       88.0 

1C       89.6 

1D       91.0 

1E       91.0 

1F       91.0 

1G       91.0 

2. Losses 644 

We further study how the training objectives affect the 645 
performance of pre-trained features. The results are shown in Table 646 
7, the baseline model 2A  is trained by instance-level similarity loss 647 

which closes the distance between the instance and its local parts in 648 
embedding space and gets a classification accuracy of 91.3%. 649 
Combined with one of the point-level similarity loss (model 2B ) or 650 

feature separability loss (model 2C ), we observed 0.4% and 0.3% 651 

improvement respectively. Our full model joint learns with three 652 

objectives (model 2D ) achieves a notable 92.0% on ModelNet40. 653 

Table 7. Ablation study results (%) of different pre-training 654 
objectives. 655 

Model instanceL  pointL  separabilityL  OA 

2A     91.3 

2B     91.7 

2C     91.6 

2D     92.0 

E. Robustness 656 

To test the robustness of our method to random noise, we randomly 657 
jitter the XYZ coordinates of points with Gaussian noises in linear 658 
evaluation on ModelNet40 during test time. Each point cloud is 659 
jittered with randomly sampled Gaussian noises with zero mean 660 

and standard deviation {0.025,0.05,0.075,0.1}  . As shown in 661 

Fig. 8, we compare our ULD-Net with OcCo and STRL under 662 
different noise levels. We can see that our ULD-Net keeps robust 663 

with 83.9% accuracy even when noise is at a high level with a 0.1 664 
standard deviation. It can also be observed that our ULD-Net gets 665 
competitive results with existing URL methods OcCo and STRL. 666 

 667 
Figure 8. Results with Gaussian noise. 668 

5. Discussion and Conclusion 669 

In this paper, we propose a novel URL method for point cloud 670 
analysis. Our method extracts features by dense similarity learning, 671 
which is composed of instance-level and point-level similarity 672 
learning with the feature separability constraint. We also present 673 
the Equiv-Crop module to project point-level features from global to 674 
local scope to build correspondence across the transformed views. 675 
Without negative pairs, momentum encoder, or other complicated 676 
designs, ULD-Net pre-trains the network that extracts 677 
representations with the best results on linear SVM validation. After 678 
fine-tuning the pre-trained network on other downstream tasks 679 
including shape classification, shape part segmentation, and 680 
semantic segmentation, our ULD-Net also achieves competitive 681 
performances. 682 

Though our ULD-Net can generalize representations across 683 
domains and achieve competitive results on real-world scene 684 
understanding tasks, there still exists a domain gap for transferring 685 
from synthetic to scene-level data due to the large point numbers 686 
and complicated structures. In the future, we will further explore 687 
how to extend our method to domain adaptive analysis of point 688 
clouds with the domain gap bridged. We hope the dense similarity 689 
learning, feature separability constraint, and Equiv-Crop module 690 
proposed could provide insights into future context-based 691 
discriminative URL methods. 692 
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