
ULD-Net：3D Unsupervised Learning by Dense 1

Similarity Learning with Equivariant-Crop 2

YU TIAN,1,2 DA SONG,1,2 MENGNA YANG,1,2 JIE LIU,1,2,3 GUOHUA GENG,1,2 3

MINGQUAN ZHOU,1,2 KANG LI,1,2AND XIN CAO1,2,4 4

1 School of Information Science and Technology, Northwest University, Xi’an, Shaanxi, China 5
2 National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi’an, Shaanxi 710127, China 6
3 jieliu2017@126.com 7

4 caoxin@nwu.edu.cn 8

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 9

 10
Though many recent deep learning methods have achieved good performance in point cloud analysis, most of them are 11
built upon the heavy cost of manual labeling. Unsupervised representation learning methods have attracted increasing 12
attention due to their high label efficiency. How to learn more useful representations from unlabeled 3D point clouds is 13
still a challenging problem. Addressing this problem, we propose a novel unsupervised learning approach for point cloud 14
analysis, named as ULD-Net, consisting of an Equivariant-Crop (Equiv-Crop) module to achieve dense similarity learning. 15
We propose dense similarity learning that maximizes consistency across two randomly transformed global-local views at 16
both the instance level and point level. To build feature correspondence between global and local views, an Equiv-Crop is 17
proposed to transform features from the global scope to the local. Unlike previous methods that require complicated 18
designs such as negative pairs and momentum encoders, our ULD-Net benefits from the simple Siamese network that 19
relies solely on stop-gradient operation preventing the network from collapsing. We also utilize the feature separability 20
constraint for more representative embeddings. Experimental results show that our ULD-Net achieves the best results of 21
context-based unsupervised methods and comparable performances to supervised models in shape classification and 22
segmentation tasks. On the linear SVM classification benchmark, our ULD-Net surpasses the best context-based method 23
STRL by 1.1% overall accuracy. On tasks with fine-tuning, our ULD-Net outperforms STRL under fully-supervised and 24
semi-supervised settings, in particular, 0.1% accuracy gain on ModelNet40 classification benchmark, and 0.6% mIoU gain 25
on ShapeNet Part segmentation benchmark. 26

 27

 28

1. INTRODUCTION 29

As a common 3D representation, the significant advantage of point 30
cloud data over other representations (e.g. volumetric grids, 31
meshes, depth images) lies in its easy availability. With the 32
advancement of 3D acquisition technologies, various types of 3D 33
scanners, LiDARs, and RGB-D cameras (e.g. cameras in Kinect and 34
Apple devices) are becoming ever more accessible, thus point cloud 35
data can be quickly acquired without triangulating data into grids or 36
voxel form. Hence, point cloud data is ideal for wide-ranging 37
applications such as autonomous driving[1], building information 38
modeling (BIM)[2], and digital preservation of ancient artifacts[3]. 39

Recently, deep learning approaches became a dominant source 40
in point cloud analysis in resolving various problems, including 3D 41
shape classification, segmentation, object detection and tracking, 42
registration, and so on. The remarkable advances in point cloud 43

shape understanding rely on the large scale of labeled training data, 44
and the performance improves logarithmically based on the size of 45
annotated training data. The tedious and resource-consuming 46
annotation process became a bottleneck for sustainable success due 47
to the following reasons: (1) because of the sparsity, annotations for 48
low-resolution point clouds are always ambiguous; (2) with the 49
huge amount of points in dense objects which can reach hundreds 50
of millions, point-by-point annotation comes with significant costs; 51
(3) the annotation for 3D objects are inherently more error-prone 52
than for 2D instances as its high complexity; (4) few works have 53
focused on building automatic annotation tools for 3D point clouds, 54
existing tools are still in the early stage manifested in their low 55
accuracy and inconvenience. 56

In order to resolve the above practical difficulties, researchers 57
explored unsupervised representation learning (URL) in the 3D 58
point cloud analysis field based on the easy availability of unlabeled 59

data. In common URL settings, the network learns knowledge from 60
pretext tasks without supervision in the pre-training stage, then 61
transfers the learned knowledge to other downstream tasks. Most 62
existing works are based on generation tasks[4-8] that rely heavily 63
on the specific architecture designation, such as folding-based 64
decoders for completion and reconstruction tasks, the performance 65
in downstream tasks degenerates when using a general MLP-based 66
decoder. Meanwhile, generation-based tasks concentrate on 67
geometric structures which results in poor transferability on scene-68
level datasets. To eliminate the dependence on such specific 69
components and improve model transferability to real-world 70
scenes, several recent works consider context similarities[9-16] 71
between samples to explore generic methods for URL. 72

Inspired by the huge success of self-supervised learning in 2D 73
computer vision domain, several efforts have been devoted to 74
exploring context similarities in 3D point clouds based on Siamese 75
networks. Most works built on top of contrastive learning rely on 76
negative samples, Info3D[15] proposes to learn representations by 77
maximizing mutual information between 3D objects and their local 78
parts. Towards more discriminative features from local patches, Du 79
et al.[16] introduced a hard negative sampling strategy into 80
architecture. PointContrast[9] extracts dense correspondences 81
across two views of scene point clouds for point-level contrastive 82
learning. Without the requirements of negative samples, STRL[10] 83
extends BYOL[17] from 2D image processing to 3D point cloud 84
analysis by learning features between original objects and their 85
augmented views. However, previous works conduct unsupervised 86
pre-training with complicated designations, such as negative pairs 87
sampling[9], memory banks[15], and momentum encoders[10]. 88
Additionally, most methods individually considered context 89
similarities between transformed views at the instance level[10, 15, 90
16] or point level [9], separately maintaining consistency at both 91
two levels was not taken into account. 92

To this end, we present a dense representation learning 93
approach named 3D Unsupervised Learning by Dense Similarity 94
Learning with Equivariant-Crop (ULD-Net) based on three 95
common-sense intuitions. First, purely considering instance-level 96
similarity dismisses local spatial information, while learning point-97
level similarity cannot extract representative abstract semantic 98
information for the entire object. Thus, we jointly optimize the 99
model at both levels, which helps to learn sufficient knowledge for 100
downstream tasks. Second, the two branches of the network output 101
point-level features within different scopes, while point-level 102
similarity learning aims to maximize corresponding features across 103
views, the features should share the same scopes with one-to-one 104
correspondence. Therefore, we propose an Equiv-Crop module 105
equivariant with Cropping transformation to map the global 106
features to the local scope. Third, it is proved that without 107
redundant components which raise the computational cost, a 108
simple stop-gradient design can get the network rid of collapse[18]. 109
Using these inductive biases alone, we can train a Siamese network 110
with a stop-gradient operation on top of SimSiam[18] to output 111
point embeddings, with objectives maximizing similarities between 112
embeddings across local-global views, aiming at pre-training dense 113
representations with strong transferability in downstream tasks. 114

The process of the proposed method is illustrated in Fig. 1. The 115
pair of augmented point clouds (shown as blue dots) in global-local 116
views are processed by the same encoder network and a projector 117
network to extract features (shown as pentagons or crosses in other 118
colors). 119

 120
Fig. 1. An illustration of the proposed method. 121

The Equiv-Crop module is applied to the global view side to 122
project global features to the local scope. The predictor network is 123
applied on one side, and the stop-gradient operation is on the other 124
side. After taking dense similarity learning as a pretext task during 125
pre-training, the trained encoder network transfers the learned 126
knowledge to downstream tasks such as shape classification, part 127
segmentation, semantic segmentation, and so on. We theoretically 128
prove the intuitions can improve the performance through serial 129
experiments conducted, the method we proposed achieves 130
competitive results to existing methods. Our contributions can be 131
summarized as follows: 132
(1) We propose a novel method for 3D point cloud unsupervised 133

representation learning, which learns dense features by 134
maximizing their local-global similarities at the point level and 135
instance level, eliminating the need for negative samples or 136
other complicated designs. 137

(2) We introduce a novel point mapping strategy named Equiv-138
Crop for correspondence across views with local and global 139
scopes, to provide the foundation for point-level feature 140
learning. The local scope is produced by a Cropping operation, 141
and two augmented views are generated by integrated with an 142
Inv-Aug strategy while the robustness is boosted. 143

(3) We present a feature separability constraint that maximizes 144
the separability of feature vectors from different dimensions 145
while boosting the representability of features. 146

2. RELATED WORKS 147

A. Deep architectures for point cloud processing 148

The advances in deep learning and learning-based point descriptors 149
have been helpful to the impressive performance of recent point 150
cloud processing for several 3D understanding tasks. Existing 151
methods focus on alleviating the difficulty caused by the irregularity 152
of 3D point clouds, with most works extracting features directly 153
from points. 154

PointNet[19] is the seminal work using deep learning that 155
performs directly on raw point clouds, which achieved input order 156
invariance by symmetric functions. Since PointNet learns features 157
independently through point-wise MLP for each point, later works 158
paid attention to capturing local structural information using 159
various methods. PointNet++[20] learns local features by a 160
hierarchical network, which is stacked by set abstraction layers. 161
PointCNN[21] designed discrete convolutional kernel χ-conv 162
particular for point clouds. Considering each point in point clouds as 163
a vertex, DGCNN[22] and RGCNN[23] construct graphs in spatial 164
and spectral space. Kd-Net[24] learns features by constructing 165
hierarchical data structures based on K-d trees. Recently, 166
transformer-based methods[25, 26] are proposed for long-range 167

visual dependencies learning. In this work, common architectures 168
are suitable to be utilized as backbone networks because of our 169
flexible designation. 170

B. Deep architectures for point cloud processing 171

URL is drawing increasing interest owing to its superiority in 172
resolving the annotation bottleneck. Since annotations for 3D data 173
take higher costs than 2D vision data, 3D tasks are supposed to 174
benefit much more from URL. However, compared with Natural 175
Language Processing (NLP) and 2D vision, the unsupervised pre-176
text task defined for 3D point cloud data is much less mature. 177

Numerous pretext tasks have been proposed for strong 178
presentation acquisition with specific objectives, which can be 179
broadly divided into 2 categories: generation-based and context-180
based tasks. Generation-based tasks take point clouds themselves 181
as supervised information, including reconstructing original input 182
from low-dimensional vectors[4, 5], generating new point clouds 183
similar to training samples from random noise[6], up-sampling 184
point clouds from sparse to dense[7], and completing missing 185
parts[8]. Learning features through context-based methods is 186
another rising research direction, including performing instance 187
discrimination[9, 10], solving 3D jigsaw puzzles[11], predicting 188
rotation angles[12], predicting the next point in the sequence[13], 189
and disentangling the mixed point clouds[14]. Considering multi-190
level similarity, a pretext task defined as optimizing the cosine 191
similarities at both the instance level and point level is proposed, 192
accompanied by a feature separability constraint aiming at more 193
representative features. 194

C. Siamese neural networks 195

Siamese network consists of two identical artificial neural networks 196
for comparing the projected representations of the two input 197
vectors. The key challenge in siamese methods is how to avoid 198
collapsing solutions. SimCLR[27] and MoCo[28] proposed based on 199
the core idea of contrastive learning that drags positive sample pairs 200
and pushes negative sample pairs away. Different from comparing 201
samples in the current batch in SimCLR, MoCo builds a dynamic 202
dictionary with a queue and a moving-averaged encoder to get rid 203
of the dependence on large batch size and to improve the 204
consistency of the queues. Clustering-based methods construct 205
Siamese networks with clustering intergraded while achieving 206
competitive results without a memory bank. Specifically, SwAV[29] 207
solves degenerate solutions through computing cluster 208
assignments from one view playing as negative samples relying on 209
the Sinkhorn-Knopp algorithm. Asymmetric methods prevent 210
features from collapsing using asymmetric architecture. BYOL[17] 211
uses a momentum encoder accompanied by stop-gradient and 212
moving-average, while SimSiam[18] removes the momentum 213
encoder and keeps minimum core architecture as an elegant 214
realization. Inspired by SimSiam, we build our network based on 215
the Siamese architecture with a stop-gradient operation as its 216
computational advantage. 217

3. METHOD 218

The overall pipeline of our ULD-Net is depicted in Fig. 2. Taking 219
unsupervised point cloud datasets as source data, our fundamental 220
idea is to train an encoder network by modeling dense consistency 221
between local-global features from transformed views to extract 222
representations for better transferability on downstream tasks. 223

qins

I(1)

I(2)

MM

MM

(a)Instance-level Similarity
Learning

(b)Point-level Similarity Learning

(c) Feature Separability Constraint

qins hins

qpt hpt

qpt

qch

qch

hch

Linfo-NCE

C

zglobal

zlocal

eglobal

P

α global

α local

I ：Inv-Aug

C ：Cropping

EC ：Equiv-Crop module

MM ：matrix multiplication

Linfo-NCE ：info-NCE loss：stop-gradient operation

fθ

fθ

Shared

EC

EC

Linstance Lpoint

Linstance ：instance-level loss Lpoint ：point-level loss

A2

A1

Vlocal

Vglobal
F globalF pt J globalJ pt

F localF pt J localJ pt

F globalF ch

F localF ch

J localJ ch

J globalJ ch
S globalS ch

S globalS pt

M

M

M ：Max-Pooling

h ：predictor

q ：projector

：encoder networkfθ 224
Fig. 2. The overall overview of the proposed pre-training method. 225

For each point cloud object P , we first transform the original 226
input into two random augmented views in the global and local 227
scope by Inv-Aug and Cropping transformations. Then, we encode 228
the point clouds to generate feature maps in high dimensional space 229

by a weight-shared encoder network f . Inspired by SimSiam, we 230

promote the representational ability of the encoder by minimizing 231
the dissimilarities between feature maps through dense similarity 232
learning. We integrate the instance-level (Fig. 2(a)) and point-level 233
(Fig. 2(b)) similarity learning into a unified framework, and we also 234
utilize feature separability constraint (Fig. 2(c)) for more 235
discriminative features. Taking our approach to pre-train an 236
encoder network from unlabelled data, the learned encoder can be 237
transferred to various downstream tasks for feature extraction. 238

A. Views and Features Generation 239

Given each input point cloud N 3P  with N elements, we 240

transform its geometric features (XYZ coordinates) by Inv-Aug and 241

Cropping operations with random factors. Inv-Aug is a collection of 242

data augmentations consisting of rotation, translation, scaling, and 243

jittering. We start the transformation with two randomly Inv-Aug 244

augmentations (1)I and (2)I that output two augmented point 245

clouds (1)
1 ()A I P and (2)

2 ()A I P . Regarding one augmented 246

point cloud 1A as the global view 1globalV A of the input point 247

cloud P (as in Eq.(3)), we conduct a Cropping operation C on 248

another augmented point cloud to generate the local view. Different 249

from Inv-Aug which keeps the object complete, the Cropping 250

operation transforms points to a random local scope. 251

1. Cropping Operation 252

The Cropping operation C consists of two steps conducted at the 253

augmented point set 2A . First, we compute the indices of at least 50% 254

of points inside the coordinate range defined by a random 3D 255

cuboid, with computed indices [1,...,] },{ , [1 ...,]im Lij N   , 256

the selected L points 2[]A m inside a cuboid local scope are kept as 257

downsampled points. Since the point sequence is invariant to Inv-258

Aug operations (1)I and (2)I , the downsampled point set 2[]A m 259

with L elements corresponds exactly to points with the same 260
indices m in the global scope point set globalV (i.e. 1A). Second, we 261

upsample the downsampled point set 2[]A m from size L to the 262

predefined input size N of the encoder network. We choose 263
inverse distance weighted average based on k nearest neighbors (as 264
in Eq.(1), in default we use 2, 3p K ) for interpolation, outputs 265

upsampled point set regarded as local view (as in Eq.(4)), 266

2

1

2
1

[] [,]
[]

[

()
, [1,...,]

()]

K

r knn
r

local K

r
r

A i A i r
V Ni

A i

w
i

w





 



 (1) 267

where 3N K
knnA   denotes the K nearest neighbors of N 268

points in the entire point set 2A , the neighbors are searched in the 269

downsampled point set 2[]A m , ()d  denotes the euclidean 270

distance between two points, and rw is computed for the weight of 271

the thr neighbor: 272

 2
2]

1
()[]

[[),(,]r p
knn

w
d A

A i
A i i r

 (2) 273

In conclusion, the correspondence between two scales is 274
constructed by downsampled indices m and the K neighbors 275

knnA . Thus, two different views in local and global scope with 276

transformation in Eq.(3)(4) are produced. 277

 (1)
1 ()global IV A P  (3) 278

 (2)
2() (())localV C A C I P  (4) 279

2. Dense Feature Map Generation 280
The global-local views from the same point cloud are then 281
processed by a backbone encoder network f with parameters  . 282

The encoder shares the same weights between views. For local 283
input localV , the encoder f computes a point-level feature map 284

()pt
local localF f V including representations for each point in the 285

local view localV , the feature vector for the thi point is noted as 286

[]pt
local iF . Simultaneously, f yields a high-dimensional vector 287

local after max-pooling describing the entire local view localV at 288

the instance level. Following the same computation pipeline with 289

local features, a point-level feature map ()pt
global globalf VF  and an 290

instance-level representation global from the global view are 291

generated. 292

 (())global globalmaxpooling f V  (5) 293

 (())local localmaxpooling f V  (6) 294

3. Equiv-Crop 295

Denoting high dimensional features from global and local view 296

without max-pooling as , N D
global localF F  , where D denotes 297

the number of feature dimensions, global view features globalF can 298

be transformed to local scope through a module EC equivalent to 299
Cropping operation. Since the network is permutation invariant, the 300
sequences of output features correspond to network input 301
sequences. Namely, there is a one-to-one correlation between the 302

input point and output feature. For example, the thi point 303

[]globalV i in the global view is represented by the feature vector 304

[]global iF . Based on such a principle, global features globalF can be 305

directly mapped into the corresponding local scope using the same 306

correspondence in the Cropping operation done in views 307
transformation. Specifically, we gather the global features of points 308
in the same local cuboid scope in Cropping following the same 309
downsampling and upsampling steps. First, we downsample the 310
features by selecting indices m saved in Cropping, the 311

downsampled features []globalF m represent features of points in 312

downsampled points 2[]A m in Cropping. Then, with the 313

downsampled features []globalF m , we upsample the features from 314

the searched K nearest neighbors knnA same as in Cropping, 315

2

1

2
1

[] [,]
([])

[

()
, [1,...,]

()]

K

r knn
r

global K

r
r

w
E

A i F i
i

r
C F

i
N

w
i

A





 



 (7) 316

where N K D
knnF   denotes features of neighbors knnA , ()d 317

denotes the euclidean distance between two vectors, and rw 318

denotes the weight of the thr neighbor. The Equiv-Crop module 319
then transforms global features into local scope defined in Cropping. 320

B. Dense Similarity Learning 321

To achieve sophisticated similarity measurement, we learn local-322
global consistency through dense similarity learning. Solely 323
learning consistency between local and global views at the instance 324
level would cause most of the spatial information to be discarded 325
during pooling. To tackle this question, we jointly learn instance-326
level and point-level similarities. Moreover, for point-level feature 327
learning, we utilize the Equiv-Crop module in Sec. A.3 towards 328
mapping point embeddings from the global scope to the local one. 329

1. Instance-Level Similarity Learning 330

We learn instance-level similarity from representations local and 331

global , the pipeline is shown in Fig.2(a). We first transform features 332

by the same projector network insq , which is a three-layer MLP 333

head output with features ()ins
global globalz q  and 334

()ins
local localz q  . Then, a predictor network insh transforms the 335

projected feature from one view to predict another, outputs 336

predictions ()ins
global globale h z and ()ins

local locale h z . 337

Meanwhile, a stop-gradient operation is applied to the projected 338
features from another view. We symmetrically minimize the 339
distance of feature maps and predictions from another view: 340

1 1

D(,sg()) D(,sg())
2 2instance local global global localL e z e z  (8) 341

where sg is the stop-gradient operation to avoid the outputs of the 342

network collapsing to constant and D() in Eq.(9) is a distance 343

function measuring negative cosine similarity in high-dimensional 344
feature space: 345

2 2

D(,)
|| || || ||

globallocal
local global

local global

ze
e z

e z
   (9) 346

where 2|| || denotes 2l normalization. 347

2. Point-Level Similarity Learning 348

We formulate point-level similarity learning as shown in Fig.2(b) to 349
maximize the similarity of point predictions. Input with point-level 350

feature maps pt
localF and pt

globalF , following the same pipeline with 351

instance-level similarity learning, a projector ptq is used to 352

transform the point-level features first. For each point, we predict 353
its feature from another view. However, due to the input point 354

represented by thi feature mismatch between local and global 355
scope, it is incompatible with common sense to predict directly 356
between two features from the same indices. To bridge the gap, an 357
Equiv-Crop module EC maps the projected features from global 358
to local scope, and the projected features are noted as 359

(())pt pt pt
global globalJ EC q F , ()pt pt pt

local localJ q F . After that, the 360

predictions ()pt pt pt
global globalS h J and ()pt pt pt

local localJS h for each 361

point are outputted from the point-level predictor pth . 362
We symmetrically maximize the similarity between the 363

projected feature for the thi point and its prediction: 364

 1

1
D(,sg())

2
1

 D(,sg())

[] []

[] [
2

]

N
pt pt

point local global
i

pt pt
global local

L S J

S J

i i

i i








 (10) 365

C. Feature Separability Constraint 366

It is common that projected features and predictions (such as367

[]pt
globalJ i and []pt

localS i) contain different information after random 368

augmentations, but similarity learning forces these embeddings to 369
be close to each other, which leads to a risk of features from different 370
dimensions degenerating to the same value. To address the 371
degenerating issue, besides the stop-gradient operation, we further 372
propose a feature separability constraint as illustrated in Fig.2(c) to 373
boost the expressiveness of features. 374

The channel embeddings are obtained by the sum of 375
multiplication between the feature maps and predictions: 376

 [] ()[]
N

ch pt pt
global global global

i

F J i EC F i  (11) 377

 [] []
N

ch pt pt
local local local

i

F J i F i  (12) 378

where ,ch ch D D
global localF F   , D and D represents the number 379

of output feature channels in the predictor and encoder. 380
Similar to similarity learning, we transformed the embeddings by 381

a projector composed of an MLP head chq and predictor chh 382

output embeddings ()ch ch ch
global globalJ q F , ()ch ch ch

local localq FJ 383

and predictions ()ch ch ch
global globalS h J , ()ch ch ch

local localS h J . By using 384

info-NCE loss[30], the similarities of features in different channels 385
decreased, which leads to higher separability. Specifically, we 386
optimize the feature separability by Eq. (13): 387

1
(,sg())

2
1

 (,sg())
2

ch ch
separability info NCE local global

ch ch
info NCE global local

L JSL

L S J








 (13) 388

where info NCEL  is the info-NCE loss as: 389

0

0

exp([] [] /)

exp([] [] /)
(,)

R

info NCE R
r

r

S r J r
L log

S r J r
S J











 

 



 (14) 390

where  denotes the temperature coefficient of 0.1 in default, R 391
denotes the number of dimensions of the prediction feature S . 392

4. Experiments and Results 393

A. Datasets 394

To validate the effectiveness and transferability of our method, 395
three benchmarks (ModelNet40[31], ShapeNet part[32], and 396
S3DIS[33]) are used in the experiments. In the pre-training stage, 397
ModelNet40 is used for all experiments, ShapeNet55 is additionally 398
used for linear evaluation comparison. For downstream tasks, we 399
use ModelNet40 benchmark for shape classification, ShapeNet Part 400
benchmark for shape part segmentation, and S3DIS benchmark for 401
scene semantic segmentation. 402

ModelNet40. ModelNet40 includes 12,311 synthesized 3D 403
objects (divided into 9,843 training samples and 2,468 testing 404
samples) from 40 categories. We downsample each object to 2,048 405
points whose XYZ coordinates normalized into a unit sphere 406
following the pre-processing method from PointNet[19]. 407

ShapeNet Part. ShapeNet55[34] contains 57,748 synthetic 3D 408
shapes from 55 categories. ShapeNet Part benchmark includes 409
16,881 shapes of 16 categories selected from ShapeNet55. Each 410
sample is annotated with 2 to 5 parts, part labels for all categories 411
amounted to 50. Intersection of Union (IoU) is widely used for 412
segmentation evaluation that measures the ratio between point-413
wise ground truth and prediction. For the part segmentation task, 414
we compute category mIoU by averaging IoUs over parts of the 415
same object category, instance mIoU is obtained by averaging over 416
all test shapes. 417

S3DIS. Stanford 3D Indoor Spaces (S3DIS) dataset contains 3D 418
scans of 6 different places including 271 rooms, which cover over 419

26,000m . Each point is represented by a 9-dimensional vector 420

consisting of XYZ coordinates, RGB color values, and normalized 421
location, individual point is labeled with 13 semantic categories. We 422
use the same pre-processing procedures as the original work, each 423
room is split into blocks with 1 1m m area, and each block contains 424
4,096 points sampled. To evaluate semantic segmentation 425
performance, mIoU is computed by averaging IoUs over all points. 426

B. Implementation Details 427

Architecture Parameters. For a fair comparison with previous 428
methods, DGCNN backbone is used as the default encoder network 429
which outputs features with 1,024 dimensions. All projectors and 430
predictors are designed with the same architecture. Specifically, 431
each projection MLP head consists of 3 fully connected layers with 432
dimensions of [512,256,256], each prediction MLP head consists of 433
2 fully connected layers with dimensions of [512,256], each layer 434
has batch normalization applied, and LeakyReLU activation with a 435
negative slope of 0.2 is used except for the final output layer. For 436
jointly learning instance-level similarity, point-level similarity, and 437
feature separability, our ULD-Net optimizes the total loss 438

1 2 3instance point separabilityL L LL    , to balance the significance 439

of all tasks, we choose 1 2 100   and 3 10  based on the 440

numbers of each loss to keep them in the same order of magnitude. 441
Pre-training Setup. We follow the settings of STRL in 442

unsupervised pre-training experiments. We implemented our 443
work with the deep learning library PyTorch using a single TITAN 444
RTX GPU for all experiments. Specifically, the Adam optimizer is 445
used in our model with an initial learning rate of 0.001, the learning 446
rate is decayed by 0.7 every 20 epochs, and the batch size is 24 by 447
default. We pre-train ULD-Net for 200 epochs on ModelNet40. 448

Fine-tuning Setup. As an end goal in URL, we verify the 449
effectiveness of the pre-trained features transferred to new tasks in 450
a fully-supervised fashion. For 3D shape classification on 451
ModelNet40, we use a batch size of 24 for training and testing with 452
250 epochs, the SGD optimizer is used with an initial learning rate 453
of 0.1, momentum 0.9, and weight decay 0.0001, and the learning 454
rate is decayed with a cosine annealing scheduler. Slightly different 455
from the above settings for the classification task, the batch size 456
used for 3D part segmentation on ShapeNet Part is 16 and we train 457
the network for 100 epochs with Adam optimizer for 3D semantic 458
segmentation on S3DIS. 459

C. Downstream Results 460

1. Linear evaluation for Shape Classification 461

For 3D shapes classification, we train a linear SVM (Support Vector 462
Machine) on the target dataset ModelNet40 to evaluate the 463
effectiveness of the learned instance-level features following the 464
common protocol in prior URL works[8, 10, 11]. For the SVM 465
classifier, the input features are obtained after the pre-trained 466
encoder network with the following pooling layer, and the weights 467
of the feature extractor are frozen during evaluation. Following the 468
settings in DGCNN classification network, the pooling layer outputs 469
concatenated features after max-pooling and average-pooling 470
operations. The classification results compared with the state-of-471
the-art are shown in Table 1, all methods tabulated are 472
implemented with DGCNN backbone as a feature extractor for a fair 473
comparison. As shown in the table, the proposed method achieves 474
91.9% and 92.0% overall accuracy after pre-trained on ShapeNet55 475
and ModelNet40 dataset, which outperforms existing unsupervised 476
method STRL[10] by 1.0% and OcCo[8] by 2.8%. These results 477
suggest that the features attained by our pre-training method are 478
discriminative that can easily achieve competitive performance 479
even with little effort of training on SVM. 480

Table 1. Classification accuracy results (%) with linear SVM in 481
URL methods on ModelNet40 (“OA” denotes overall accuracy.) 482

Pre-training Dataset Method OA

ShapeNet

FoldingNet [4]
Du et al. [16]
Jigsaw3D [11]
Rotation3D [12]
STRL [10]

88.4
89.6
90.6
90.8
90.9

Ours 91.9

ModelNet40

FoldingNet [4]
Jigsaw3D [11]
MAP-VAE [5]
OcCo [8]
Ours

84.4
87.8
90.2
89.2
92.0

Towards a better understanding of the capability of our method 483
proposed, we visualize the learned features on the test dataset of the 484
ModelNet10 as illustrated in Fig.3, which is compared with features 485
from a randomly initialized encoder network. Using T-SNE (t-486
distributed stochastic neighbor embedding)[35] to project the 487
instance-level high-dimensional features in 2D space, we observe 488
that the learned features from instances of different categories are 489
separable, except dressers and nightstands, which are difficult to 490
distinguish even by a human. Compared with the projected features 491
from random initialization, our pre-trained are dragged to further 492
distances between features of distinct categories. Since the random 493
initialized features can be regarded as the prior of the encoder 494
network, the comparison proves our pre-training method can learn 495
knowledge of 3D shapes without supervision. 496

Random Initialization Ours
 497

Fig. 3. Visualization of pre-trained instance-level features. 498

2. Supervised Fine-tuning for 3D Shape classification 499

Further fine-tunes the encoder network on ModelNet40 without 500
freezing, resulting in better classification accuracy. Following a 501
common fine-tuning pipeline in URL methods, after an 502
unsupervised pre-training stage aimed at maximizing dense 503
similarities, we take the pre-trained encoder network parameters 504
as initialization for the encoder network used in transfer learning, 505
then optimize the network by specific objective for classification 506
task in a supervised fashion. To produce predictions for the 507
classification task, we train a classification MLP head during fine-508
tuning along with the encoder network, the classification head takes 509
instance-level features after pooling as input and output with 510
classification scores for each object towards supervised validation 511
on ModelNet40. Comparisons of fine-tuned classification results are 512
illustrated in Table 2. 513

Table 2 ． Comparisons of our fine-tuned classification 514
accuracy (%) result against other methods on ModelNet40 515
(“Sup.” denotes supervised.) 516

Method Sup. OA
PointNet [19]  89.2
RGCNN [23]  90.5
PointNet++ [20]  90.7
KD-Net [24]  91.8
PointCNN [21]  92.2
DGCNN [22]  92.2
Point Cloud Transformer [26]  93.2
PointTransformer [25]  93.7
Jigsaw3D [11]  92.4
Info3D [15]  93.0
OcCo [8]  93.0
FoldingNet [4]  93.1
STRL [10]  93.1
Ours  93.4
As shown in Table 2, after fine-tuning from our pre-trained model, 517

the proposed method achieves an additional 1.0% accuracy gain 518

over the original DGCNN trained from randomly initialized 519
parameters (93.2% vs. 92.2%), which suggests our pre-training 520
method can boost the ability of the feature extractor. Our method 521
outperforms unsupervised methods OcCo and STRL by 0.2% and 522
0.1% in terms of overall accuracy and achieves the best fine-tuned 523
performance on ModelNet40. The results indicate that our ULD-Net 524
can attain a comparable performance with the state-of-the-art fully 525
supervised methods. 526

Our method accelerates the convergence of the encoder 527
framework during the fine-tuning stage. As shown in Fig. 4, 528
compared with the random initialization, the loss number of our 529
method keeps lower than random initialization at about 0.2 during 530
training and convergence after fewer epochs. 531

532
Fig. 4. Convergence curves during fine-tuning. 533

3. Semi-supervised Fine-tuning for 3D Shape Classification 534

We further evaluate our pre-trained model on the shape 535
classification task under a semi-supervised setting. We use the same 536
setting as STRL and report the overall accuracy on ModelNet40 as 537
shown in Table 3. Specifically, we reduce the annotated input 538
shapes to 1%, 5%, 10%, and 20% of the training data, and at least 539
one shape is selected for each category. Then we evaluate the model 540
fine-tuned by the reduced training data on the full test dataset. The 541
results show that our model surpasses the randomly initialized 542
model by 2.2% and 1.7% when 1% and 20% of training shapes 543
were sampled, and our ULD-Net slightly outperforms STRL when 544
the sampling ratio of 1%, 10%, and 20%, indicates our pre-training 545
method improves annotation efficiency. 546

Table 3. Fine-tuned results (%) under a semi-supervised 547
setting 548

Method 1% 5% 10% 20%
DGCNN [22] 58.4 80.7 85.2 88.1
STRL [10] 60.5 82.7 86.5 89.7
Ours 60.6 82.5 86.8 89.8

4. Supervised Fine-tuning for 3D Shape part segmentation 549

To validate the effectiveness of fine-grained point-level features 550
gained from our method, we fine-tune the pre-trained network for 551
the part segmentation task. Different from classification fine-tuning 552
only transfers parameters from the encoder network, segmentation 553
fine-tuning uses parameters from the pre-trained encoder and its 554
attached point-level projector. We fine-tune them on ShapeNet Part 555
dataset to verify the performance of our ULD-Net on the part 556
segmentation task. The quantitative results compared with the 557
state-of-the-art URL and supervised methods are shown in Table 4. 558
It shows that our ULD-Net shows the best performance (85.7% 559
instance mIoU) among other URL approaches and achieves top 560

performance in 6 categories such as Aeroplane, Car, and Knife. Since 561
ShapeNet Part is a long-tailed dataset, the instance mIoU is mostly 562
decided by shapes of large amounts (Aeroplanes, Chairs, Lamps, 563
Tables, etc.), which leads to the unbalance performance on different 564
categories of shapes. Compared with supervised methods, we also 565
achieve comparable results. 566

The segmentation results of all shapes are qualitatively 567
illustrated in Fig.5. These visualization results show our method can 568
segment one shape to clear parts close to the ground truths. 569

Ground
Truth

Ours

Ground
Truth

Ours

 570
Fig. 5. Qualitative results on ShapeNet Part dataset. 571

 Furthermore, we compare our ULD-Net with STRL and OcCo on 572
shapes including aeroplanes, bags, and cars as illustrated in Fig.6, 573
which shows ULD-Net captures more local details than STRL and 574
OcCo. In confusing regions annotated with blue bounding boxes, 575
containing points in the intersection of the main body and other 576
parts of different categories, such as the tail of aeroplanes 577
demonstrated in Fig.6 (a), the handle of bags in Fig.6 (b) and the roof 578
of cars in Fig.6 (c), shows that our method distinguishes such 579
regions better. 580

(a)

(b)

(c)

Groud Truth OcCo STRL Ours

 581
Fig. 6. Visual comparison of part segmentation on ShapeNet Part. 582

5. Supervised Fine-tuning for 3D Semantic Segmentation 583

Transferring features pre-trained on synthetic CAD object models 584
to real-world segmentation tasks is considered more challenging 585
than tasks on synthetic shapes. To elucidate this problem, we also 586
test our method for the indoor semantic segmentation task on 587
S3DIS dataset to validate the cross-domain generalizability of our 588
pre-trained features to a real-world dataset. 589

Table 4. Fine-tuning part segmentation mIoU results (%) on ShapeNet Part dataset (“Ins.” denotes instance mIoU.)590
591

Shapes
Supervised Method Unsupervised Method
DGCNN
[22]

RSCNN
[36]

PCT
[26] LGAN [6] Method in

[16]
Jigsaw3D
[11] OcCo [8] STRL [10] Ours

Ins. 85.2 86.2 86.4 57.0 82.3 85.3 85.5 85.1 85.7
Aero 84.0 83.5 85.0 54.1 82.1 84.1 84.4 83.7 84.7
Bag 83.4 84.8 82.4 48.7 74.5 84.0 77.5 80.3 82.8
Cap 86.7 88.8 89.0 62.6 83.6 85.8 83.4 87.6 83.8
Car 77.8 79.6 81.2 43.2 74.9 77.0 77.9 77.7 78.3
Chair 90.6 91.2 91.9 68.4 87.9 90.9 91.0 90.9 90.9
Earphone 74.7 81.1 71.5 58.3 72.4 80.0 75.2 78.0 77.0
Guitar 91.2 91.6 91.3 74.3 89.9 91.5 91.6 91.4 91.3
Knife 87.5 88.4 88.1 68.4 85.4 87.0 88.2 87.7 88.2
Lamp 82.8 86.0 86.3 53.4 79.1 83.2 83.5 83.7 83.8
Laptop 95.7 96.0 95.8 82.6 95.2 95.8 96.1 96.1 95.6
Motor 66.3 73.7 64.6 18.6 67.3 71.6 65.5 66.7 68.6
Mug 94.9 94.1 95.8 75.1 93.3 94.0 94.4 95.0 94.3
Pistol 81.1 83.4 83.6 54.7 81.0 82.6 79.6 81.2 80.6
Rocket 63.5 60.5 62.2 37.2 58.2 60.0 58.0 58.2 61.9
Skateboard 74.5 77.7 77.6 46.7 74.0 77.9 76.2 75.3 75.1
Table 82.6 83.6 83.7 66.4 79.2 81.8 82.8 82.1 83.4

592
Using the pipeline similar to part segmentation, we transfer the 593

parameters of the encoder and point-level projector to supervised 594
fine-tuning for the semantic segmentation task.We test our model 595
under 6-fold cross-validation over the 6 areas as in the original 596
work[33]. As the quantitative results summarized in Table 5, our 597
ULD-Net achieves the best segmentation result with 85.5% overall 598
accuracy and 59.2% mIoU, which surpasses the state-of-the-art 599
method OcCo by 0.4% overall accuracy and 0.7 mIoU. Compared 600
with existing URL methods, these results demonstrate better 601
transferability of our ULD-Net from synthetic shapes to real-world 602
scene datasets. It is observed that our results even surpass the 603
supervised PointNet, PointNet++, and DGCNN, and also achieve 604
competitive performance with other supervised models. 605

Table 5. Semantic segmentation results (%) on S3DIS dataset. 606
Method Sup. OA mIoU
PointNet [19]  78.6 47.6
PointNet++ [20]  81.0 54.5
PointCNN [21]  88.1 65.4
DGCNN [22]  84.1 56.1
Jigsaw [11]  84.4 56.6
OcCo [8]  85.1 58.5
Ours  85.5 59.2
We show qualitative results of S3DIS indoor semantic 607

segmentation by visualizing selected rooms in Fig. 7. Empirically, 608
we observe that our network is able to understand and classify 609
semantic objects in a real-world scene, and our segmentation 610
results are close to the ground truth. 611

ceiling

floor

wall

beam

column

window

door

table

chair

sofa

bookcase

board

clutter

Ground Truth Ours 612
Fig. 7. Visualization of semantic segmentation results on S3DIS Dataset. 613

D. Ablation Study 614

To investigate the effectiveness of our key components in ULD-Net, 615
we study the impact of adopting different combinations of losses 616
and transformations during the pre-training stage by validating the 617
downstream SVM classification results using their pre-trained 618
features on ModelNet40. 619

1. Transformations 620

We analyze the effectiveness of different transformations in Inv-621
Aug and Cropping for view generation used in the pre-training stage. 622
We remove certain transformations to produce augmented views 623
when pre-training and validate the implication with SVM. As 624
summarized in Table 6, our full model 1A uses all transformations 625

and achieves the best result of 92.0%. Without any transformations 626
(model 1B), the network inputs of the two branches are exactly the 627

same, which makes the network overfits pre-training samples due 628
to too many task-irrelevant detailed features captured, hence the 629
classification result degenerates to 88.0%. The result reduces when 630
one transformation is removed, proving that each adopted 631
transformation schedule boosts the performance of pre-trained 632
features. Among transformations, removing the Cropping 633

transformation C (model 1C) affects the performance the most 634

by a 2.4% descent (92.0% vs. 89.6%) compared with the model 635

1A . Removing each transformation in Inv-Aug including Rotation 636

(model 1D), Translation (model 1E), Jittering (model 1F), and 637

Scaling (model 1G), the performance degenerates to 91.0%, 91.0%, 638

91.2%, and 91.5% respectively, which indicates the importance of 639
each transformation is decreasing by the above order. 640

Table 6. Results (%) from pre-trained features with different 641
transformations. (“Rot.” Denotes Rotation, “Trans.” Denotes 642
Translation, “Scal.” Denotes Scaling, “Jit.” Denotes Jittering) 643

Model C Rot. Trans. Scal. Jit. OA
1A      92.0

1B      88.0

1C      89.6

1D      91.0

1E      91.0

1F      91.0

1G      91.0

2. Losses 644

We further study how the training objectives affect the 645
performance of pre-trained features. The results are shown in Table 646
7, the baseline model 2A is trained by instance-level similarity loss 647

which closes the distance between the instance and its local parts in 648
embedding space and gets a classification accuracy of 91.3%. 649
Combined with one of the point-level similarity loss (model 2B) or 650

feature separability loss (model 2C), we observed 0.4% and 0.3% 651

improvement respectively. Our full model joint learns with three 652

objectives (model 2D) achieves a notable 92.0% on ModelNet40. 653

Table 7. Ablation study results (%) of different pre-training 654
objectives. 655

Model instanceL pointL separabilityL OA

2A  91.3

2B   91.7

2C   91.6

2D    92.0

E. Robustness 656

To test the robustness of our method to random noise, we randomly 657
jitter the XYZ coordinates of points with Gaussian noises in linear 658
evaluation on ModelNet40 during test time. Each point cloud is 659
jittered with randomly sampled Gaussian noises with zero mean 660

and standard deviation {0.025,0.05,0.075,0.1}  . As shown in 661

Fig. 8, we compare our ULD-Net with OcCo and STRL under 662
different noise levels. We can see that our ULD-Net keeps robust 663

with 83.9% accuracy even when noise is at a high level with a 0.1 664
standard deviation. It can also be observed that our ULD-Net gets 665
competitive results with existing URL methods OcCo and STRL. 666

 667
Figure 8. Results with Gaussian noise. 668

5. Discussion and Conclusion 669

In this paper, we propose a novel URL method for point cloud 670
analysis. Our method extracts features by dense similarity learning, 671
which is composed of instance-level and point-level similarity 672
learning with the feature separability constraint. We also present 673
the Equiv-Crop module to project point-level features from global to 674
local scope to build correspondence across the transformed views. 675
Without negative pairs, momentum encoder, or other complicated 676
designs, ULD-Net pre-trains the network that extracts 677
representations with the best results on linear SVM validation. After 678
fine-tuning the pre-trained network on other downstream tasks 679
including shape classification, shape part segmentation, and 680
semantic segmentation, our ULD-Net also achieves competitive 681
performances. 682

Though our ULD-Net can generalize representations across 683
domains and achieve competitive results on real-world scene 684
understanding tasks, there still exists a domain gap for transferring 685
from synthetic to scene-level data due to the large point numbers 686
and complicated structures. In the future, we will further explore 687
how to extend our method to domain adaptive analysis of point 688
clouds with the domain gap bridged. We hope the dense similarity 689
learning, feature separability constraint, and Equiv-Crop module 690
proposed could provide insights into future context-based 691
discriminative URL methods. 692

Funding. National Natural Science Foundation of China (61701403); 693
China Post-doctoral Science Foundation (2018M643719); Young 694
Talent Support Program of the Shaanxi Association for Science and 695
Technology (20190107). 696

Data availability. Data underlying the results presented in this 697
paper are available in Ref. [31-33]. 698

References 699

1. A. Oliver, S. Kang, B. C. Wünsche, and B. MacDonald, "Using the Kinect as 700
a navigation sensor for mobile robotics," in Proceedings of the 27th 701
conference on image and vision computing New Zealand, 2012), 509-514. 702

2. X. Lu, X. Mao, H. Liu, X. Meng, and L. Rai, "Event Camera Point Cloud 703
Feature Analysis and Shadow Removal for Road Traffic Sensing," IEEE 704
Sensors Journal 22, 3358-3369 (2022). 705

3. C. Rausch, M. Nahangi, C. Haas, and J. West, "Kinematics chain based 706
dimensional variation analysis of construction assemblies using building 707
information models and 3D point clouds," Automation in Construction 708
75, 33-44 (2017). 709

4. Y. Yang, C. Feng, Y. Shen, and D. Tian, "Foldingnet: Point cloud auto-710
encoder via deep grid deformation," in Proceedings of the IEEE 711
conference on computer vision and pattern recognition, 2018), 206-215. 712

5. Z. Han, X. Wang, Y.-S. Liu, and M. Zwicker, "Multi-Angle Point Cloud-VAE: 713
Unsupervised feature learning for 3D point clouds from multiple angles 714
by joint self-reconstruction and half-to-half prediction," in 2019 IEEE/CVF 715
International Conference on Computer Vision (ICCV), (IEEE, 2019), 10441-716
10450. 717

6. P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, "Learning 718
representations and generative models for 3d point clouds," in 719
International conference on machine learning, (PMLR, 2018), 40-49. 720

7. R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, "Pu-gan: a point cloud 721
upsampling adversarial network," in Proceedings of the IEEE/CVF 722
International Conference on Computer Vision, 2019), 7203-7212. 723

8. H. Wang, Q. Liu, X. Yue, J. Lasenby, and M. J. Kusner, "Unsupervised point 724
cloud pre-training via occlusion completion," in Proceedings of the 725
IEEE/CVF International Conference on Computer Vision, 2021), 9782-726
9792. 727

9. S. Xie, J. Gu, D. Guo, C. R. Qi, L. Guibas, and O. Litany, "Pointcontrast: 728
Unsupervised pre-training for 3d point cloud understanding," in 729
European conference on computer vision, (Springer, 2020), 574-591. 730

10. S. Huang, Y. Xie, S.-C. Zhu, and Y. Zhu, "Spatio-temporal self-supervised 731
representation learning for 3d point clouds," in Proceedings of the 732
IEEE/CVF International Conference on Computer Vision, 2021), 6535-733
6545. 734

11. J. Sauder and B. Sievers, "Self-supervised deep learning on point clouds 735
by reconstructing space," Advances in Neural Information Processing 736
Systems 32(2019). 737

12. O. Poursaeed, T. Jiang, H. Qiao, N. Xu, and V. G. Kim, "Self-supervised 738
learning of point clouds via orientation estimation," in 2020 International 739
Conference on 3D Vision (3DV), (IEEE, 2020), 1018-1028. 740

13. A. Thabet, H. Alwassel, and B. Ghanem, "Self-supervised learning of local 741
features in 3d point clouds," in Proceedings of the IEEE/CVF Conference 742
on Computer Vision and Pattern Recognition Workshops, 2020), 938-939. 743

14. C. Sun, Z. Zheng, X. Wang, M. Xu, and Y. Yang, "Point cloud pre-training 744
by mixing and disentangling," arXiv preprint arXiv:2109.00452 (2021). 745

15. A. Sanghi, "Info3d: Representation learning on 3d objects using mutual 746
information maximization and contrastive learning," in European 747
Conference on Computer Vision, (Springer, 2020), 626-642. 748

16. B. a. Du, X. Gao, W. Hu, and X. Li, "Self-contrastive learning with hard 749
negative sampling for self-supervised point cloud learning," in 750
Proceedings of the 29th ACM International Conference on Multimedia, 751
2021), 3133-3142. 752

17. J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. 753
Doersch, B. Avila Pires, Z. Guo, and M. Gheshlaghi Azar, "Bootstrap your 754
own latent-a new approach to self-supervised learning," Advances in 755
neural information processing systems 33, 21271-21284 (2020). 756

18. X. Chen and K. He, "Exploring simple siamese representation learning," 757
in Proceedings of the IEEE/CVF Conference on Computer Vision and 758
Pattern Recognition, 2021), 15750-15758. 759

19. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point 760
sets for 3d classification and segmentation," in Proceedings of the IEEE 761
conference on computer vision and pattern recognition, 2017), 652-660. 762

20. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep hierarchical 763
feature learning on point sets in a metric space," Advances in neural 764
information processing systems 30(2017). 765

21. Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, "Pointcnn: Convolution on 766
x-transformed points," Advances in neural information processing 767
systems 31(2018). 768

22. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, 769
"Dynamic graph cnn for learning on point clouds," Acm Transactions On 770
Graphics (tog) 38, 1-12 (2019). 771

23. G. Te, W. Hu, A. Zheng, and Z. Guo, "Rgcnn: Regularized graph cnn for 772
point cloud segmentation," in Proceedings of the 26th ACM international 773
conference on Multimedia, 2018), 746-754. 774

24. R. Klokov and V. Lempitsky, "Escape from cells: Deep kd-networks for 775
the recognition of 3d point cloud models," in Proceedings of the IEEE 776
international conference on computer vision, 2017), 863-872. 777

25. H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, "Point transformer," in 778
Proceedings of the IEEE/CVF International Conference on Computer 779
Vision, 2021), 16259-16268. 780

26. M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, "Pct: 781
Point cloud transformer," Computational Visual Media 7, 187-199 (2021). 782

27. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, "A simple framework 783
for contrastive learning of visual representations," in International 784
conference on machine learning, (PMLR, 2020), 1597-1607. 785

28. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, "Momentum contrast for 786
unsupervised visual representation learning," in Proceedings of the 787
IEEE/CVF conference on computer vision and pattern recognition, 2020), 788
9729-9738. 789

29. M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, 790
"Unsupervised learning of visual features by contrasting cluster 791
assignments," Advances in Neural Information Processing Systems 33, 792
9912-9924 (2020). 793

30. A. v. d. Oord, Y. Li, and O. Vinyals, "Representation learning with 794
contrastive predictive coding," arXiv preprint arXiv:1807.03748 (2018). 795

31. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, 3D 796
ShapeNets: A deep representation for volumetric shapes (2015), pp. 797
1912-1920. 798

32. L. Yi, V. G. Kim, D. Ceylan, I. C. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. 799
Sheffer, and L. Guibas, "A Scalable Active Framework for Region 800
Annotation in 3D Shape Collections," ACM Trans. Graph. 35(2016). 801

33. I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. 802
Savarese, "3D Semantic Parsing of Large-Scale Indoor Spaces," in 2016 803
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 804
2016), 1534-1543. 805

34. A. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. 806
Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, "ShapeNet: An 807
Information-Rich 3D Model Repository," (2015). 808

35. L. Van der Maaten and G. Hinton, "Visualizing data using t-SNE," Journal 809
of machine learning research 9(2008). 810

36. Y. Liu, B. Fan, S. Xiang, and C. Pan, "Relation-shape convolutional neural 811
network for point cloud analysis," in Proceedings of the IEEE/CVF 812
Conference on Computer Vision and Pattern Recognition, 2019), 8895-813
8904. 814

 815

